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The e$ciency of noise barriers is usually estimated neglecting their elastic behaviour. In
this paper, the total vibro-acoustical response of simple barriers is considered. A variational
approach with a boundary-element technique is used. It is a generalization of an existing
formalism developed for the study of two-dimensional acoustical problems. The case of
straight and thin barriers is studied. It is found that, at low frequencies, their vibrations can
modify their insertion losses by several decibels.
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1. INTRODUCTION

Important e!orts are being made in order to improve both the e$ciency and the design of
noise barriers. Straight and thick barriers are replaced by more sophisticated ones with
improved shapes. Thin wood or glass panels are now employed. New caps to place at their
top are being tested [1]. Many parameters have been considered so far when assessing the
e$ciency of noise barriers: geometry [2], type of ground [3], type of source [4}7], complex
interactions with surroundings such as the body of a train [6, 8], and atmospheric
conditions [9, 10]. Vibration of the noise barrier is usually considered to be of no
importance. This implies that the transmission is due solely to di!raction e!ects at the top
of the barrier, and that transmission through the barrier can be neglected. This assumption
seems quite reasonable in the case of thick concrete or brick walls, for instance; however, the
e!ect of transmission seems worth considering when dealing with thin barriers, or at
a receiver point deep in the barrier's shadow zone. A recent paper by Habault and Filippi
[11], who considered the e!ect of vibrating panels in rooms also suggests that this e!ect
might in#uence noise barriers.

In a previous paper [6], the author presented a variational formalism for the study of
two-dimensional (2-D) noise barriers, assumed to be either rigid or described by locally
reacting impedances. In this paper, a fully coupled approach is presented. It is an extension
of a formalism, based on a variational method using boundary elements, which was "rst
developed by Jean in 1983 [12}14] and used by several authors in subsequent works
[15}18]. An important review of numerical models to solve structural-acoustical problems
can be found in reference [19].

The case of a simple barrier is considered. Three materials are tested: wood, glass or
paraglass. The e$ciency of the vibrating barrier is compared with that of a rigid barrier of
the same thickness. At low frequencies, the vibration of very thin barriers a!ects their
e$ciency.
022-460X/00/410001#21 $35.00/0 ( 2000 Academic Press



2 P. JEAN
2. THE INTEGRAL REPRESENTATION

Figure 1 shows the geometry of the problem, A 2-D representation has been adopted, but
the formalism is also valid in 3-D, provided that appropriate Green's functions are
employed [13]. The analysis is done for harmonic time dependence e~*ut. E is an in"nite,
coherent line source which, therefore, appears as a point source in the 2-D representation.
The ground is #at, of in"nite extent, and may be either rigid or of constant admittance a.

The integral representation of the pressure at any point M apart from the boundaries can
be written as

P (M)"P
S
C
LP(Q)

Ln
Q

G(M, Q)!P (Q)
LG(M, Q)

Ln
Q

D dS(Q)#t(M). (1)

G(M, Q) is the Green solution of the problem; it gives the elementary pressure at any
point M when only the in"nite #at ground B is present, and for a unit line source at any
point Q. t (M) is the source contribution; it represents the pressure when only B is present.
o is the #uid density. The integration is carried over the boundary S di!erent from B;
therefore S can either be a surface ; above the ground such as a barrier or a part ¸ of the
ground having a di!erent impedance than the ground B (for instance a portion of a road on
an in"nite grassy plane [7]).

n is the normal to the boundaries, directed towards the #uid. The admittances are de"ned
as ratios of displacement to pressure.

The expression for G is the sum of three terms [3]:

G(M, Q)"!(i/4)H
0
(kr)!(i/4)H

0
(kr~)#Pa(M, Q). (2)

Here r is the (M, Q) distance, r~ is the distance between M and the image of Q with respect
to the ground B, and H

0
is the Hankel function of the "rst kind and order zero. The second
Figure 1. Geometry of the 2-D problem. ¸ and ; are lower and upper boundaries to be discretized. E is
a coherent line source: R represents vibrating bodies; , vibrating surface; - - - -, acoustical surface.



THE EFFICIENCY OF VIBRATING NOISE BARRIERS 3
term describes the contribution of a hard #oor, and Pa is the correction factor for ground
admittance.

By de"nition, the elementary solution G veri"es, on the plane z"0, the relationship

LG(M, Q)

Ln
M

"ou2aG(M, Q), M3B. (3)

The surface of integration S (either above or on the ground) can be either de"ned as
a vibrating surface or an acoustic surface (de"ned by its surface admittance), respectively,
identi"ed by the index v or a.

On S
v
";

v
X¸

v
, the vibrating boundaries, one has

LP(Q)/Ln
Q
"ou2=(Q), (4)

where = is the normal component of the displacement on the surface of the vibrating
structure R.

On S
a
";

a
X¸

a
, the boundaries of admittance >, one has

LP(Q)/Ln
Q
"ou2>(Q). (5)

Substituting expressions (3)}(5) into equation (1) leads to a new expression for the pressure
at any point M in the #uid:

c (M)P(M)"P
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Cou2=(Q)G(M, Q)!P(Q)

LG(M, Q)

Ln
Q

D dS (Q)

#P
Ua
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c(M) is equal to unity for all points outside the upper boundary; and to 1
2

for any smooth
point on ;.

In this expression, any integral containing a LG/Ln
Q

term must be taken in the
principal-value sense (P<).

One can then express (1/ou2) (LP/Ln
M

), when M is on S, as
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in which M is assumed to be a smooth point and
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with

R(M, Q)"L2G(M, Q)/Ln
M

Ln
Q
. (9)

The terms in expressions (7) are obtained, when M tends towards Q, as a limit contribution
of LG (M, Q)/Ln

M
. FP denotes the "nite part of the integral, which is divergent. The principal

value P< is applied either to the ¸
v
, ¸

u
,;

a
or ;

v
integral, depending on which of these

surfaces M is on.
The functional for the #uid is then built in the case where there is no ¸

v
, surface, since

vibrating surfaces at ground level are unlikely to occur in the case of noise barriers.
However, the computations can easily be done with this term included; this could
correspond to the case of a vibrating plate in an in"nite ba%e.

In order to simplify the equations one can replace the integral operators by the notation
ST

S
. Then one can introduce the arbitrary test function q, su$ciently regular and de"ned

on the boundary S. The functional for the #uid is obtained by expressing

Sq (M)>(M)P (M)T
La

, Sq(M)>(M)P (M)/2T
Ua

, (10)

Sq(M) (!aP(M))T
La

, Sq(M) (!>(M)P (M)/2)T
Ua

, Sq(M)=(M)/2T
Uv

. (11)

In expression (10), P (M) is obtained from equation (6) and, in expression (11), the
expressions of equation (7) are employed. Each of these "ve quantities is then expressed as
a homogeneous equation. Next, the functional of the #uid is obtained by summing these "ve
homogeneous equations.

The functional R for the vibrating structure can be written as

R(u, W)"E (u, W)!SP(u/2)T
Uv
!Su(P/2)T

Uv
. (12)

E corresponds to the sti!ness and mass terms of the structure whereas the simple integrals
on the vibrating upper surface ;

v
correspond to the external loads due to the #uid.

W represents the displacement vector and u is an associated test function (u is its normal
component with respect to ;

v
). In the case of mechanical excitations, a Su.uT

Uv
term, in

which u represents the surface forces acting on;
v
, must be added. In equation (12), the last

term is modi"ed by using expression (6) of P on ;
v
.

Finally, the total functional H is then the sum of equations (12), for the structure, and
equations (10), (11) for the #uid,

H[(u, q), (W, P)]"E (u, W)#I[(u, q), (=, P)]"¹(u, q),
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in which I is the #uid part of the functional expressed as

I[(u, q), (=, P)]"K(;
v
,;

v
)#K (;
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a
, L

a
) (13)

and

¹ (u, q)"¹ (;
v
)#¹(;

a
)#¹(¸

a
).

The K (A, B) terms are bilinear forms which correspond to the in#uence between boundaries
A and B, the "rst three terms being auto-in#uence terms. The ¹ terms are linear forms
corresponding to the acoustical excitation. The expressions for the K and ¹ terms are given
in Appendix A. The terms K(;

v
, ;

v
) and ¹ (;

v
) are often considered and correspond to the

initial formulation by Jean [12, 13] but the addition of the other terms is necessary to obtain
a general formulation to study noise barriers.

The bilinear form H is symmetric, since points M and Q may be interchanged. Therefore,
H[(W, P), (u, q)]"H[(u, q), (W, P)] and the solution (W, P) of the problem is the stationary
point of

Z(W, P)"1
2
H[W, P), (W, P)]!¹ (W, P). (14)

In the previous expressions, the second integration takes care of the local values of c(M),
at discontinous points, which are not equal to 1/2. The double integrations are all
convergent, especially the integrals containing the double derivative R. The "nite part of
expressions (7), due to R, is suppressed by the second integration and the transformation
[21] of the double derivative of G.

3. NUMERICAL IMPLEMENTATION

A "nite-element technique was used to discretize equation (14). Two domains must be
distinguished: the structure and the #uid.

The contribution of the #uid takes the form of surface integrals which, in 2-D, are contour
integrals. Simple linear elements have been employed. Each double integral is written as
a double sum over the Ne elements of the meshing. The #uid matrices are calculated by
using a classical Gauss double summation. More detailed numerical considerations can be
found in references [6, 13].

The contributions from the vibrating structure are calculated in the classical way, with
full 2-D elements. Several elements have been implemented. In the case of the straight
barrier considered in the examples, a six-node, 2-D-shell element is employed, with three
nodes on each side [22]. It assumes that the normal stresses r

n
"0. In order to facilitate the

implementation and construction of the global matrix, the sti!ness and mass matrices
corresponding to the structure are condensed, so that only the components corresponding
to the nodes in contact with the #uid remain [13]. Upon calling > the total matrix for the
structure, and X the vector of mechanical excitations, if any, and denoting by c and u the
coupled and uncoupled nodes, the reduced structural matrix and vector are

>*">
cc
!>

cu
>~1

uu
>
uc

, X*"!>
cu
>~1

uu
X

u
. (15)

>* can be obtained directly as an intermediate result of a triangular decomposition of >,
carried out only for the uncoupled nodes, where the coupled nodes are stored after the
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uncoupled ones [23, 24]. The construction of the global matrix is then straightforward.
When a material de"ned by its impedance is placed between a vibrating structure and the
#uid, the corresponding normal displacement at the surface is stored as an unknown
pressure. Due to the symmetry of the functional F, the global matrix is symmetrical.

The sizes of the elements for the boundaries, and for the structure itself, need not be the
same, since the wavelengths at a given frequency can be di!erent in the two domains,
depending on the frequency with respect to the critical frequency. Rather than
programming dedicated algorithms which permit the use of incompatible meshings, as in
Reference [18], the case of a "ner meshing for the structure has been addressed simply by
using multiple meshings, and by suppressing the extra nodes on the coupled boundaries at
the condensation state of the > matrices. An example is given in the following paragraph.
A Cholevsky decomposition of the matrix is used to solve the problem [25]. After
resolution, equation (6) is used to obtain the pressure at any point in the #uid.

4. NUMERICAL EXAMPLES

The simple case of a straight barrier is considered. In most cases, the barrier is 3 m high
and is made either of wood (E"12]109 N/m2, o

S
"650 kg/m3, g"0)02, l"0)01), of glass

(E"87]109 N/m2, o
S
"2400 kg/m3, g"0)001, l"0)24)) or of paraglass

(E"3)3]109 N/m2, o
S
"1190 kg/m3, g"0)03, l"0)40), which is a type of plexiglass. The

damping g is introduced in the form of a complex Young's modulus E (1#ig). These
materials have been found to be representative of actual barrier designs. The barriers
considered have small thickness values h, ranging from 10 to 30 mm. The x-axis is parallel
to the ground and x"0 is placed on the receiver side of the barrier such that the source side
is at x"!h. The vertical co-ordinate z starts at the ground, which is "rst considered rigid.
It should be noted that barriers made of paraglass tend to be more widely used in place of
glass, usually with thickness h"10 or 15 mm. A line source is placed at position (!2)3, 0)5)
and the sound pressure is computed at di!erent positions behind the barrier at a height of
2 m. The #uid is air (c"340 m/s, o"1)3 kg/m3). These values are used in all cases unless
otherwise stated.

4.1. MESHING

The elements used for the #uid and for the structure are presented in Figure 2. We call Nf
and Ns the number of nodal interspaces on the vertical side, respectively, for the 2-node
#uid elements and for the 6-node structural elements; in the case of Figure 2, Nf"6
corresponds to three elements for the structure and Ns"6.

Consider "rst the case of a 10-mm-thick glass barrier. At 200 Hz, the wavelength in air is
1)7 m and the bending wavelength in the barrier is only 0)682 m. Using 24 elements on each
side of the barrier then corresponds to 13)6 elements per acoustical wavelength and 5)4
interspaces per bending wavelength. Figure 3 shows the pressure level at position (1, 2)
obtained by using Nf"24 or 48 elements for the #uid. In Figures 3(a) and 3(b) the numbers
of structural elements are such that Ns is, respectively, equal to Nf and Nf]4 along the
vertical side. As mentioned earlier, the use of a more re"ned meshing for the structure than
for the #uid is rendered possible by condensing the extra nodes on the sides together with
the interior nodes. Figure 3(a) shows that the peak at 215 Hz is not correctly estimated if
Ns"Nf"24. Figure 3(b) shows an improved convergence if Ns is increased by a factor of
4, since the results in those cases are little changed when the number of elements is
multiplied by 2 (Nf"24 or 48). This is particularly interesting, upon considering that the



Figure 2. Meshing of a vertical barrier: three structural, six-node elements; six acoustical, 2-node elements on
a vertical side.

Figure 3. E!ect of over-meshing the structure on the relative pressure level at point (1, 2). The #uid is meshed
with nf ** 24 or +++ 48 elements on a vertical side. The structure has (a), nf, (b) 4nf nodal corresponding
interspaces. 10 mm glass barrier.

THE EFFICIENCY OF VIBRATING NOISE BARRIERS 7
time needed to compute the #uid matrices is much higher than the time needed to compute
the structural part of the problem. The 10-mm-thick paraglass barrier is the con"guration
most frequently used in the examples, and the computations are done with Nf"48, 96, 192
and with Ns"2]Nf. It has been veri"ed that Nf"48 ensures convergence up to 1500 Hz
and that, with Nf"96, convergence is obtained at 2000 Hz the highest third-octave band
considered.

4.2. MODEL BEHAVIOUR

For the case of a 10-mm-thick barrier made of glass, the mean horizontal velocity level on
the barrier, corresponding to bending, is plotted in Figure 4, along with the pressure level at
position (1, 1), for both the vibrating and the rigid cases. The source is a unit coherent line.
The peaks in the velocity spectrum correspond to the bending behaviour of the barrier; peak



Figure 4. Modal behaviour of a 10 mm glass barrier: s**s mean bending velocity; pressure level at (1, 1);
** glass barrier +++ rigid barrier.
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values can also be seen in the pressure response of the vibrating barrier. Apart from the
peaks, the pressure level of the rigid barrier is close to that generated by the vibrating
barrier at high frequencies whereas, between 50 and 300 Hz, larger di!erences can be
noticed. The "rst bending modes occur at 6)5, 18, 36)5, 60)5, 90)5, 126)5, 169 and 217 Hz.
Around 200 Hz (bending wavelength 1)061 m), where the maximal in#uence of the barrier's
elasticity can be seen (see also Figure 6), there are already several bending wavelengths
along the barrier so that no clear relationship can be established between structural
wavelength and maximal e!ect of the barrier's elasticity. For other more damped materials,
such as paraglass, the modal behaviour of the barrier cannot be seen so clearly on the
pressure levels.

4.3. EFFECT OF THE BARRIER MATERIAL

The e!ect of the vibrations is best estimated as the di!erence between the pressure levels
in the vibrating and rigid cases, which we shall call the relative pressure level. In Figure 5}7,
such di!erences are plotted, at positions 5 and 20 m behind the screen, and at z"2 m, for
10-mm-thick barriers, respectively, made of wood, glass and paraglass. Note that each
"gure has a di!erent vertical scale. A positive value corresponds to an increase of pressure
level behind the barrier or a reduction of the barrier's e$ciency and is mainly due to the
occurrence of structural resonances, whereas anti-resonances will have an opposite e!ect.
The highest level di!erences are found for wood; the sharpest peaks are obtained for the
glass material which is the least damped. However, in practice, wooden barriers are usually
thicker than 10 mm, at least in the order of a few centimetres.

4.4. EFFECT OF THE BARRIER THICKNESS

Figures 8}10 show, in third-octave bands and at position (20, 2), the relative pressure
levels, respectively, for the three materials, for thicknesses of 10, 20 and 30 mm. Above
20 mm, the e!ect is less than 3 dB at all frequencies. For all barriers, the strongest e!ect is
seen at 200 and 250 Hz. This is signi"cant, since the contribution of lorries to tra$c noise is



Figure 5. E!ect of barrier material on its e$ciency:** 5 m and } ) } ) } ) } 20 m behind the barrier, at z"2 m.
Barrier made of wood, 3 m high, 10 mm thick.

Figure 6. E!ect of barrier material on its e$ciency:** 5 m and } ) } ) } ) } 20 m behind the barrier, at z"2 m.
Barrier made of glass, 3 m high, 10 mm thick.

Figure 7. E!ect of barrier material on its e$ciency:** 5 m and } ) } ) } ) } 20 m behind the barrier, at z"2 m.
Barrier made of paraglass, 3 m high, 10 mm thick.

THE EFFICIENCY OF VIBRATING NOISE BARRIERS 9



Figure 8. E!ect of the thickness of the barrier on the relative pressure level. Third-octave band results. Receiver
at (20, 2). Wooden barrier: s**s 10 mm; h} } }h 20 mm; n} ) } ) }n 30 mm.

Figure 9. E!ect of the thickness of the barrier on the relative pressure level. Receiver at (20, 2). Glass barrier:
s**s 10 m; h} } }h 20 mm; n} )} ) }n 30 mm.
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Figure 10. E!ect of the thickness of the barrier on the relative pressure level. Receiver at (20, 2). Paraglass
barrier: s**s 10 mm; h} } }h 20 mm; n} ) } ) }n 30 mm
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becoming more and more important; the vibration of such barriers can be signi"cantly
a!ected by the low-frequency acoustical emission of these vehicles. The noise emitted by
motorbikes is also important around 200}250 Hz.

4.5. EFFECT OF THE INTERNAL LOSS FACTOR

The three materials considered in Figures 5}10 have di!erent loss factors, and the e!ect
of various values of g is now considered, for glass and paraglass barriers, by taking
g"0)001 (as for glass in Figures 6 and 9), and 0)03 (as for paraglass in Figures 7 and 10). As
can be seen in Figures 11(a) and 11(b), respectively, for glass and for paraglass, increasing
g will smooth the relative pressure levels without changing the general trends of the curves.
Corresponding third-octave results, as shown in Figures 12(a) and 12(b), reveal little
in#uence of g in the case of paraglass whereas, in the case of glass barriers, the main e!ect at
200 Hz, already less important than for paraglass, becomes even less pronounced if
g changes from 0)001 to 0)01. In practice, when glass panels are mounted in supporting
structures, extra damping is added by the boundary conditions, resulting in higher values.
Measurements have been carried out [26] on actuglass 4-m-high barriers. Reverberation
time measurements using impact excitation have led to values of g in the order of 0)03 below
500 Hz. Measurements on 2 mm steel barriers have led to values of g in the order of 0)04.

4.6. EFFECT OF RECEIVER AND SOURCE POSITION

The e!ect of the elasticity of the barrier depends on the receiver position. For the
10-mm-thick paraglass barrier, the third-octave relative pressure levels are plotted in
Figures 13(a)}13(c). Each plot corresponds to a di!erent third-octave band and shows



Figure 11. E!ect of di!erent values of g: (a) glass barrier; (b) paraglass barrier;** g"0)001; } ) } )} g"0)01;
- - - - - g"0)03.

Figure 12. E!ect of di!erent values of g: (a) glass barrier; (b) paraglass barrier;** g"0)001; } ) } )} g"0)01;
- - - - - g"0)03. Third-octave results.
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the pressure-level di!erences at 2 m height and at distances varying from 1 to 50 m behind
the barrier. The highest values are found at 200 Hz and reach a maximum 14 m behind the
barrier. At other frequencies the maximum e!ect occurs at other positions. For instance, at
630 Hz, a maximal e!ect is found 44 m behind the barrier.



Figure 13. Relative pressure level as a function of the distance behind the barrier, at z"2 m. Paraglass 10 mm:
****, s} ) } ) }s, **, (a) 125, 160, 200 Hz; (b) 250, 315, 400 Hz; (c) 500, 630, 800 Hz.

Figure 14. Relative pressure level, third-octave 200 Hz. Paraglass 10 mm, receiver at z"2 m.
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The variation of the vibration e!ects with receiver position is best appreciated by looking
at Figure 14 which shows, in the 200 Hz third-octave band, the variation of the relative
pressure level as a function of both the x and z positions behind the barrier. A strong
angular dependence can be seen, since maximum e!ects appear along regular lines starting
at the barrier. Along the most important of these lines the amplitude exceeds 12 dB.

The e!ect of the position of the source is illustrated in Figures 15(a) and 15(b), for the case
of a 10-mm-thick paraglass barrier, and for a receiver, respectively, at (5, 2) or (20, 2). The



Figure 15. E!ect of the position of the source. Paraglass 10 mm, receiver at (a) (5, 2), (b) (20, 2) S at x"****
!2)29, s* *s !1)29, !0)49.
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source is placed successively at x"!2)29, !1)29 and !0)49 m, at z"2 m. The e!ect of
position is very marked; no systematic variation can be seen.

4.7. EFFECT OF THE BARRIER HEIGHT

Next, the e!ect of the height of the barrier is investigated. This height is taken as 2, 3 and
4 m, for a paraglass barrier, 10 mm thick. The sound pressure level at point (20, 2) is plotted
successively in Figures 16(a), 16(b) and 16(c) for the three heights, both for a rigid barrier
and a vibrating barrier. As already noted, vibrations of the barrier will a!ect the sound
pressure in the low-frequency range. In the case of the 4-m-high barrier (Figure 16(c)), the
minimum value of the pressure level at 200 Hz is well compensated by the action of the
vibrations such that the importance of a source with a strong emission component at this
frequency, might be underestimated if the barrier is assumed to be rigid.

The variation of the relative pressure level with the distance behind the 4-m-high barrier,
in the third-octave bands 125, 160 and 200 Hz, is plotted in Figure 17, and should be
compared to Figure 13(a) obtained for a 3-m-high barrier. The increase of the e!ect of the
barrier's elasticity is apparent at most positions; it becomes principally a positive e!ect
whereas, for the 3-m-high barrier, negative values can be seen at many frequencies.

Figure 18 shows, again, the e!ect of position of the receiver behind the barrier by
comparing the absolute pressure levels for the rigid and the paraglass barriers, for
third-octave levels 125 to 250 Hz and con"rms the positive e!ects noticed in Figure 17.

4.8. OTHER EFFECTS

In the previous examples the ground has been taken as rigid. The e!ect of a ground
covered with grass (p"600 kN s/m4 in the Delany and Bazley model [27]) is illustrated in



Figure 16. E!ect of the barrier height, at (20, 2):** rigid; +++ 10 mm paraglass. Heights (a) 2 m, (b) 3 m, (c)
4 m.

Figure 17. Relative pressure level as a function of the distance behind the barrier, at z"2 m. Paraglass 10 mm,
4 m high: ****; s**s; h==h 125, 160, 200 Hz.
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Figure 19. The relative pressure level at 200 Hz, behind the barrier, is plotted for both the
rigid and grass situations. Little di!erence can be seen, so that the type of ground does not
seem to a!ect the previous results.

The in#uence of an absorbent material placed on the barrier is now considered. A 3 m
high and 10 mm thick barrier, either rigid or made of paraglass, is prolonged by 1 m of an
impedant structure (p"30 kN s/m4) of the same thickness. In the case of the elastic lower
part with an absorbent upper part, surfaces S

v
and S

a
must be considered in the functional



Figure 18. Pressure level as a function of the distance behind the barrier, at z"2 m. Barrier 10 mm thick and
4 m high: **** rigid; s**s paraglass. (a), (b), (c), (d) 125, 160, 200, 250 Hz.

Figure 19. E!ect of the ground impedance on the relative pressure level behind the barrier, at z"2 m. 200 Hz.
4 m high barrier, paraglass 10 mm: **** rigid ground; s**s grass (p"600 kN s m~4).
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(terms (A.1)}(A.5) in Appendix A). Figure 20 reports, for both the rigid (Figure 20(a)) and
paraglass (Figure 20(b)) lower parts, a comparison of the pressure levels obtained for the
3 m and 3#1 m high barriers, at point (20, 2). Di!erent e$ciencies of the extra 1 m
absorbent extension are obtained for the rigid and elastic situations. In the rigid case, the
addition of 1 m of absorbent length results in a shift of interference patterns towards the low
frequencies, so that the pressure levels are increased between 250 and 400 Hz, whereas for



Figure 20. E!ect of a 1 m absorbent extension (p"30 kN s m4) of a 3 m high 10 mm thick barrier. (a) rigid (b)
paraglass. Receiver at (20, 2): **** 3 m, h} ) } ) } ) }h 3 m#1 m.

Figure 21. Case of a source at (!2, 0) under a rigid lorry. 10 mm thick barrier.
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the elastic case, the pressure level is increased between 100 and 400 Hz when the barrier
length is increased.

The last situation considered is related to the presence of a lorry close to the noise barrier
(Figure 21). A source is placed under the lorry, at ground level at position (!2, 0).



Figure 22. E!ect of a lorry. Receiver at (20, 2), 10 mm barrier: (a) no lorry; (b) with the lorry: **** rigid;
} ) } )} ) } paraglass.
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Computations have been made both without and with the lorry, in the case of a 4 m high,
10 mm thick barrier, either rigid or made of paraglass. The pressure levels have been
estimated at position (20, 2). Figure 22 compares the rigid and elastic barriers both without
(Figure 22(a)) and with the lorry (Figure 22(b)). It is interesting to note that when the lorry is
added, the e!ect of the barrier's elasticity is more pronounced. Due to the multiple
re#ections between the barrier and the lorry and also due to a change of the angle of
incidence of the waves impinging on the top of the barrier, the relative e!ect of the
vibrations of the barrier is then more important.

5. CONCLUSION

The importance of tra$c noise emphasizes the role of noise barriers. New designs appear
constantly as attempts to optimize the cost/e$ciency/design compromise. Thin barriers*of
the order of only 10 or 15 mm thick*made of paraglass are more and more frequently
employed. Traditional numerical predictions neglect the vibration behaviour of noise
barriers, assuming that the transmission is predominantly determined by di!raction e!ects.
This assumption has been checked by using a variational approach combined with
boundary elements for the #uid, and classical "nite elements for the vibrating structure.
Low-frequency e!ects have been revealed, typically around 200 Hz and in excess of 5 dB in
this frequency band in the case of thin paraglass barriers. The e!ect of the vibrations usually
occurs at the frequencies at which the rigid barrier shows minimum pressure levels; thus
a levelling of the frequency response results from the consideration of the vibro-acoustical
behaviour. Using a global dB(A) indicator would not show signi"cant di!erences between
rigid and vibrating noise barriers. The relevance of such an indicator is worth considering,
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especially with the prospect of increasing low-frequency noise from lorries. The program
developed for this study is general in nature and can easily account for complex situations.
Using a 2-D approach permits easy and fast parametric studies, with little e!ort necessary
for the input and post-processing of data. Other factors, such as porous media or
atmospheric conditions, should be considered in future work.
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APPENDIX A: FLUID FUNCTIONAL

The #uid terms of the functional are denoted by K(A, B) and ¹(A), where A and B denote
either;

v
(the total vibrating surface above the ground),;

a
(the impedant surface above the

ground) or ¸
a
(any portion of the ground characterized by impedant conditions other than

that of the in"nite #at ground). The K terms, after discretization will contribute to the total
matrix whereas the ¹ terms will contribute to the solicitation vector. = and P denote,
respectively, the normal displacement of a vibrating surface and the acoustic pressure. u and
q are associated test functions.

The "rst two terms correspond to the case of a vibrating structure above the ground and
will be the only terms to be retained if there are no impedant surfaces:

K(;
v
,;

v
)"!SSou2u(M)G(M, Q)=(Q)TT

Uv
]Uv

#SSu (M)(LG(M, Q)/Ln
Q
))P(Q)TT

Uv
]Uv

SSq(M) (LG(M, Q)/Ln
M
)= (Q)TT

Uv
]Uv

!SSq(M)R(M, Q)P (Q)TT
Uv

]Uv

!Su(M) (P(M)/2)T
Uv
!Sq (M) (=(M)/2)T

Uv
, (A.1)

¹(;
v
)"Su(M)t (M)T

Uv
!Sq(M) tN (M)T

Uv
, (A.2)

in which tN"(1/ou2) (Lt/Ln
M

).
Terms (A.3)}(A.5) must be considered whenever there is an absorbent surface above the

ground:

K(;
a
, ;

a
)"!SSou2q (M)>(M)G (M, Q)>(Q)P (Q)TT

Ua
]Ua

#SSq (M)[>(M) (LG(M, Q)/LnQ)#(>(Q) (LG(M, Q)/Ln
M

)]P(Q)TT
Ua

]Ua

!SSq(M)R(M, Q)P(Q)TT
Ua

]Ua
, (A.3)

K(;
a
, ;

v
)"#SSu(M) [(LG(M, Q)/Ln

Q
)!ou2>(Q)G(M, Q)]P (Q)TT

Ua
]Uv

#SSq(M) [(LG(M, Q)/Ln
M
)!ou2>(M)G(M, Q)]=(Q)TT

Uv
]Ua
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#SSq(M) [>(Q)LG(M, Q)/Ln
M
!R(M, Q)]P (Q)TT

Ua
]Uv

#SSq(M) [>(M)LG(M, Q)/Ln
Q
!R(M, Q)]P (Q)TT

Uv
]Ua

, (A.4)

¹ (;
a
)"Sq(M)> (M) t(M)T

Ua
!Sq(M) tN (M)T

Ua
. (A.5)

The remaining expressions must be considered if part of the ground di!ers from the
in"nite ground and must therefore be discretized [7]:

K(¸
a
, ¸

a
)"!SSq(M) (>(M)!a) (>(Q)!a)P (Q)TT

La
]La

#Sq (M) (>(M)!a)P (M)T
La

,

¹ (¸
a
)"Sq (M)> (M) t(M)T

La
!Sq(M)) tN (M)T

La
, (A.6)

K(¸
a
,;

v
)"!SSu(M)ou2(>(Q)!a)G(M, Q)P (Q)TT

La
]Uv

!SSq(M)ou2(>(M)!a)G(M, Q)=(Q)TT
Uv

]La

#SSq(M) (>(Q)!a) (LG/Ln
M
)P (Q)TT

La
]Uv

#SSq(M) (>(M)!a) (LG/LnQ)P (Q)TT
Uv

]La
, (A.7)
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a
)"SSq(M) (>(Q))!a)[(LG/Ln

M
)!ou2>(M)G(M, Q)]P (Q)TT

La
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Q
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. (A.8)
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